Что такое парадокс? Парадоксом называются два несовместимых и противоположных утверждения, имеющие убедительные аргументы каждый в свою сторону. Наиболее ярко выраженной формой парадокса является антиномия – рассуждение, которое доказывает равносильность утверждений, одно из которых представляет собой явное отрицание другого. И особого внимания заслуживают именно парадоксы в наиболее точных и строгих науках, таких как, например, логика.

Логика, как известно, является абстрактной наукой. В ней нет места экспериментам и каким-либо конкретным фактам в обычном их понимании; она всегда предполагает анализ реального мышления. Но расхождения в теории логики и практике реального мышления всё же имеют место быть. И самым явным подтверждением этому служат логические парадоксы, а иногда даже логическая антиномия, олицетворяющая собой противоречивость самой логической теории. Именно это и объясняет значение логических парадоксов и то внимание, которое уделяется этим парадоксам в логической науке. Ниже мы познакомим вас с самыми яркими примерами логических парадоксов. Эта информации будет непременно интересна как тем, кто углублённо изучает логику, так и тем, кто просто любит узнавать новую и интересную информацию.

Начнём же мы с парадоксов, составленных древнегреческим философом Зеноном Элейским, жившим в V веке до н.э. Его парадоксы получили название «Апории Зенона» и даже имеют свою трактовку.

1

Апории Зенона

Апории Зенона являются внешне парадоксальными рассуждениями о движении и множестве. Всего современниками Зенона было упомянуто свыше 40 апорий (кстати, слово «апория» с древнегреческого языка переводится как «трудность») его авторства, однако до нашего времени дошли только девять из них. При желании вы можете ознакомиться с ними в трудах Аристотеля, Диогена Лаэртского, Платона, Фемистия, Филопона, Элия и Сипмликия. Мы же приведём в пример три самые известные.

2

Ахиллес и черепаха

Представим, что Ахиллес бежит со скоростью, в десять раз превышающей скорость черепахи, и находится от неё на расстоянии в тысячу шагов позади. Пока Ахиллес пробежит тысячу шагов, черепаха сделает только сто. Пока Ахиллес преодолеет ещё сотню, черепаха успеет сделать десять и т.д. И этот процесс будет продолжаться бесконечно долго и Ахиллес никогда не догонит черепаху.

3

Дихотомия

Для того чтобы преодолеть определённый путь, нужно изначально преодолеть его половину, а чтобы преодолеть половину, нужно преодолеть половину этой половины и т.д. Исходя из этого, движение никогда так и не начнётся.

4

Летящая стрела

Летящая стрела всегда остаётся на месте, т.к. в любой момент времени она находится в состоянии покоя, а поскольку она в состоянии покоя в любой момент времени, она находится в состоянии покоя всегда.

Здесь же будет уместно привести ещё один парадокс.

5

Парадокс лжеца

Авторство этого парадокса приписывается древнегреческому жрецу и провидцу Эпимениду. Парадокс звучит так: «То, что я в данный момент говорю — ложь», т.е. выходит: либо «Я лгу», либо «Моё высказывание — ложно». Это значит, что если высказывание правдиво, то, основываясь на его содержании, оно является ложью, но если это высказывание изначально ложно, то его и утверждение — ложь. Получается, ложно, что это высказывание – ложь. Следовательно, высказывание правдиво – это вывод возвращает нас к началу наших рассуждений.

В наше время парадокс лжеца рассматривается в качестве одной из формулировок парадокса Рассела.

6

Парадокс Рассела

Парадокс Рассела был открыт в 1901 году британским философом Бертраном Расселом, а позже его независимо переоткрыл немецкий математик Эрнст Цермело (иногда этот парадокс называют «парадоксом Рассела-Цермело»). Данный парадокс демонстрирует противоречивость логической системы Фреге, в которой математика сводится к логике. У парадокса Рассела есть несколько формулировок:

  • Парадокс всемогущества – способно ли всемогущее существо создать что-либо, что может ограничить его всемогущество?
  • Допустим, какая-то библиотека поставила задачу составить один большой библиографический каталог, в который должны входить все и лишь те библиографические каталоги, в которых не содержится ссылок на самих себя. Вопрос: нужно ли включить в этот каталог ссылку на него?
  • Например, в какой-то стране вышел закон о том, что мэрам всех городов запрещено жить в своём городе, и разрешено жить только в «Городе мэров». Где, в таком случае, будет жить мэр этого города?
  • Парадокс брадобрея – в деревне только один брадобрей, и ему приказано брить всех, кто не бреется сам, и не брить тех, кто сам бреется. Вопрос: кто должен брить брадобрея?

Не менее интересны и занятны следующие парадоксы.

7

Парадокс Бурали-Форти

Предположение о том, что идея о возможности множества порядковых чисел может привести к противоречиям, а это значит, что противоречивой будет теория множеств, в которой возможно построение множества порядковых чисел.

8

Парадокс Кантора

Предположение о возможности множества всех множеств может привести к противоречиям, а это значит, что противоречивой будет и теория, согласно которой возможно построение такого множества.

9

Парадокс Гильберта

Идея о том, что если все номера в гостинице с бесконечным количеством номеров заняты, в неё в любом случае можно поселить ещё людей, и их число может быть бесконечным. В этом парадоксе объясняется, что законы логики абсолютно неприемлемы к свойствам бесконечности.

10

Ложный вывод Монте-Карло

Вывод о том, что, играя в рулетку, можно смело ставить на красный цвет, если чёрный выпал десять раз подряд. Данный вывод считается ложным по той причине, что, согласно теории вероятностей, на наступление любого последующего события не оказывает никакого влияния событие, ему предшествующее.

11

Парадокс Эйнштейна-Подольского-Розена

Вопрос о том, способны ли развивающиеся вдали друг от друга процессы и события оказывать друг на друга влияние? К примеру, воздействует ли каким-либо образом рождение в отдалённой галактике сверхновой звезды на погоду в Москве? В качестве ответа можно привести следующее: исходя из законов квантовой механики, такое влияние невозможно по причине того, что как скорость света, так и скорость переноса информации являются конечными величинами, а Вселенная является бесконечной.

12

Парадокс близнецов

Вопрос: будет ли близнец-путешественник, вернувшийся из космического странствия на сверхсветовом звездолёте моложе своего брата, остававшегося всё это время на Земле? Если исходить из теории относительности, то на Земле (по земному течению времени) прошло больше времени, чем в звездолёте, летящем со сверхсветовой скоростью, а значит, близнец-путешественник будет моложе.

13

Парадокс убитого дедушки

Представьте, что вы оказались в прошлом и убили своего дедушку до его знакомства с вашей бабушкой. Следует вывод, что вы не появитесь на свет и не сможете вернуться в прошлое, чтобы убить дедушку. Представленный парадокс наглядно демонстрирует невозможность путешествий в прошлое.

14

Парадокс предопределения

К примеру, человек оказывается в прошлом, имеет половой контакт со своей прабабушкой и зачинает её сына, т.е. своего деда. Это становится причиной череды потомков, включая родителей этого человека, а также его самого. Получается, что если бы этот человек не совершил путешествие в прошлое, он бы вообще никогда не появился на свет.

Это всего лишь несколько логических парадоксов, которые занимают сегодня умы многих людей. Пытливому уму не составит труда отыскать ещё не один десяток подобных. Изучению, опровержению или доказательству каждого из них можно посвятить немалое количество времени и сил. И, вполне вероятно, по поводу каждого парадокса у вас могут сформироваться свои личные оригинальные умозаключения. Но это и говорит нам о том, что, несмотря на преобладание в нашей жизни законов логики и причинно-следственных связей, не всё в нашей жизни зависит от них. Порой аналогичные логическим парадоксам противоречия возникают в повседневной жизни каждого человека. В любом случае, это прекрасная пища для ума и повод для размышлений.

Кстати, касаемо размышлений: на тему логических парадоксов есть очень интересная книга под названием «Гёдель, Ешер и Бах». Её автором является американский физик и информатик Даглас Хофштадтер.

источник

Другие интересные статьи

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here